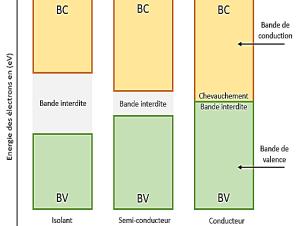

Module: Physique des Semi-conducteurs – 3^{éme} Année Physique Energétique – S5

Corrigé de l'examen

I) QUESTIONS DE COURS : (7 points)



1) La caractéristique graphique courant – tension d'une diode à Semi-conducteur

- Dans le sens direct, la tension de seuil est la tension nécessaire à appliquer à la diode pour qu'elle devienne conductrice. $V_{seuil} = 0.6V$ pour le Silicium (Si) et 0,3V pour le Germanium (Ge).
- Au-delà de la tension de seuil, le courant ne dépend pratiquement que de la résistance totale du circuit, et la tension aux bornes de la diode reste autour de 0,6V - 0,7V.

(1 pt)

(1 pt)

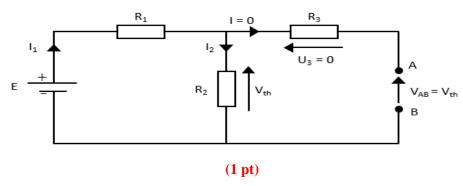
2) Les diagrammes énergétiques des solides avec ces commentaires

- Entre la bande de conduction et la bande de valence se trouve le plus souvent la bande interdite. (0.5)
- Les isolants sont des corps dont la bande interdite est trop large $\rho > 10^6 \Omega \cdot m$ (plusieurs eV); donc l'isolant ne possède pas d'électrons libres. (0.5)
- Dans les semi- conducteurs, la largeur de la bande interdite est petite (1e.V environ). La résistivité ρ du semi-conducteur varie entre (10⁻ 6 Ω.m et 10^{6} Ω.m). (0.5)
- Dans les conducteurs, la bande interdite intermédiaire est supprimée du fait du chevauchement des 2 bandes de conduction et de valence. p

(0.5)

3) Les 7 systèmes cristallins

varie entre $(10^{-8}\Omega.\text{m et }10^{-6}\Omega.\text{m}) \rightarrow faible$


Systèmes	Longueurs vecteurs directeurs des axes	Angles entre les axes
Cubique (0.5)	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$
Triclinique (1 pt)	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$
Rhomboédrique (0.5)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$

II) LES EXERCICES: (13 points)

Solution de l'exercice 1 : (7 points)

• Calcul du courant I_d, tout en appliquant le théorème de Thevenin

 $\mathbf{1}^{\grave{\mathsf{e}}\mathsf{r}\mathsf{e}}$ étape : On débranche la diode et on calcule $V_{AB}\!=\!V_{th}$

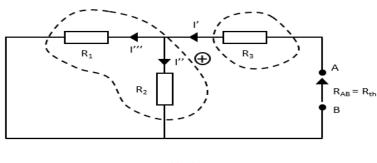
(0.5)

 $I_1 = I_2 + I_d (I_d = 0 \rightarrow circuit ouvert)$

$$I_1 = I_2 \qquad \qquad \textbf{(0)}$$

$$V_{AB} = V_{th} = \frac{R_2}{R_1 + R_2}$$
. E Diviseur de tension

Application numérique

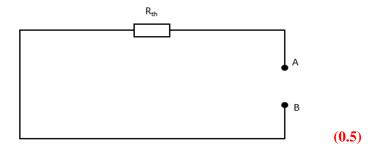

$$V_{AB} = V_{th} = \frac{40}{20 + 40}.20$$

$$V_{th} = \frac{800}{60}$$

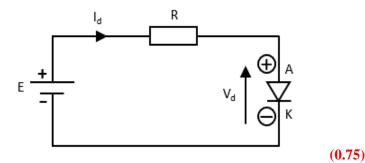
$$V_{th} = 13.33V$$

(0.5)

 $2^{\grave{e}me}$ étape : On court-circuit tous les générateurs


(1pt)

3ème étape : On calcule R_{AB} = R_{th}


$$R_{th} = \frac{R_1 R_2}{R_2 + R_1} + R_3 \tag{0.5}$$

Application numérique

$$R_{th} = \frac{20*40}{20+40} + 80 = \frac{800}{60} + 80 = 13.33 + 80 = 93.33\Omega$$

 $R_{th} \approx 93\Omega$ (0.5)

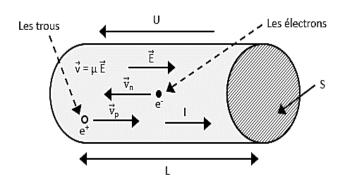
4ème étape : On enlève le court-circuit et on branche R₄

5^{ème} étape : On calcule le courant I

$$V_{th} - R_{th}I - V_d = 0$$

$$R_{th}I = V_{th} - V_d = 0$$

$$I = \frac{V_{th} - V_d}{R_{th}} \tag{0.75}$$


Application numérique

$$I = \frac{13.33 - 0.6}{93.33} = \frac{12.73}{93.33} = 0.136 A$$

$$I = 0.136 A$$

(0.5)

Solution de l'exercice 2 : (6 points)

(0.5 pt)

La concentration en trous et en électrons

- En trous:
- * Dans un cristal de type p, la concentration par électron est négligeable par rapport à celle des trous p

et l'on a :
$$\sigma = \frac{1}{\rho} = e.p.\mu_p$$
 (0.5 *pt*)

* La mobilité des trous ne dépend pas des impuretés adjointes au semi-conducteur. Pour le germanium à 27°C, elle a pour valeur :

 $\mu_p = 0.17 m^2/\textit{V.s.}$ Ainsi, on peut calculer la concentration en trous :

$$p = \frac{1}{\rho. e. \mu_n}$$
 (0.75)

Application numérique

$$p = \frac{1}{0.01.10^{-2} \times 1.6.10^{-19} \times 0.17} = \frac{1}{10^{-4} \times 0.272.10^{-19}} = \frac{1}{0.272.10^{-23}} = \frac{10^{23}}{0.272}$$
$$p = 3.68.10^{23} trs/m^3 \qquad (0.75)$$

- * Comme chaque atome d'impuretés a donné naissance à un trou, il en résulte que le semi-conducteur dopé, possède $p = 3.68.\,10^{23} atomes/m^3$.
- * Or les concentrations en n et p satisfont la relation $n_i^2 = n. p$, n_i étant la concentration intrinsèque.
- * Pour le germanium à 27°C, on a :

$$n_i = AT^{3/2} \exp\left(\frac{-Wi}{2KT}\right) \tag{1 pt}$$

Application numérique

$$n_i = 10^{23} x 300^{1/5} \exp\left(-\frac{1.2.10^{-19}}{2x1.38.10^{-23} x 300}\right) = 2.5.10^{19}$$

$$n_i = 2.5.10^{19} e^- - trs/m^3$$
 (0.75)

$$n.p = n_i^2$$
 (0.5)

D'où:

$$n = \frac{n_i^2}{p} \tag{0.75}$$

Application numérique

$$n = \frac{(2.5.\,10^{19})^2}{3.68.\,10^{23}} = \frac{6.25.\,10^{38}}{3.68.\,10^{23}} = 1.7.\,10^{15} \'{e}lectrons/m^3$$

$$n = 1.7.10^{15} \text{\'electrons/m}^3$$
 (0.5)

Chargé du Module

Prof. BENRABAH.B